题目内容:
菲波那契(Fibonacci)数列定义为
f(1)=1,f(2)=1,n>2时f(n)=f(n-1)+f(n-2)
据此可以导出,n>1时,有向量的递推关系式:
(f(n+1),f(n))=f(f(n),f(n-1))A
其中A是2*2矩阵()。从而,f(n+1),f(n)=(f(2),f(1))*(65).
A.An-1
B.An
C.An+1
D.An+2
参考答案:【答案仅供学习,请勿对照自行用药等】
答案解析:
菲波那契(Fibonacci)数列定义为
f(1)=1,f(2)=1,n>2时f(n)=f(n-1)+f(n-2)
据此可以导出,n>1时,有向量的递推关系式:
(f(n+1),f(n))=f(f(n),f(n-1))A
其中A是2*2矩阵()。从而,f(n+1),f(n)=(f(2),f(1))*(65).
A.An-1
B.An
C.An+1
D.An+2